Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 637
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38641236

RESUMEN

Alcohol use disorder is a substantial social and economic burden. During the last years, the number of women with drinking problems has been increasing, and one main concern is that they are particularly more vulnerable to negative consequences of alcohol. However, little is known about female-specific response patterns for alcohol, and potential underlying differences in brain mechanisms, including for compulsion-like alcohol drinking (when intake persists despite adverse consequences). We used lickometry to assess behavioral microstructure in adult Wistar male and female rats (n = 28-30) during alcohol-only drinking or moderate- or higher-challenge alcohol compulsion (10 or 60 mg/l quinine in alcohol, respectively). Estrous stages were determined and related to drinking levels and patterns of responding to alcohol, as was ovariectomy. Our findings showed that females (where we didn't determine estrus stage) had similar total licks in a session as males, but significantly longer licking bouts under alcohol-only and moderate-challenge, suggesting greater persistence. Further, greater intake under alcohol-only and moderate-challenge was related to faster licking in males, while female consumption was not related to licking speed. Thus, females could have increased persistence without greater vigor, unlike males. However, under higher-challenge, faster licking did predict higher intake in females, similar to males. To better understand female higher-challenge responding, we examined drinking in relation to phases of the estrous cycle. Higher-challenge had longer bouts only in late diestrus. In addition, ovariectomy led to longer bouts only under higher-challenge, suggesting that conditions with reduced hormone levels could increase female persistence for alcohol under higher-challenge. However, ovariectomy also reduced alcohol-only and moderate-challenge drinking but did not reduce bout length. Thus, intake level and response strategy could be regulated somewhat differently by ovarian hormones. Finally, moderate-challenge licking speed was less variable during early diestrus, and we previously showed more stereotyped responding specifically under moderate-challenge in males. By combining behavioral microstructure and sex- and estrus-related changes in drinking patterns, our results suggest that females have greater persistence for alcohol under lower-challenge drinking, while late diestrus and ovariectomy unmasked greater persistence under higher-challenge. Together, our novel insights could help develop more effective and personalized treatments for problematic alcohol use.

2.
Vet Res Commun ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635104

RESUMEN

The aim of this study was to evaluate the serum iron status and its relation to hematological indexes in cyclic mares. Blood samples were taken from 40 Spanish Purebred mares on days - 5, 0, + 5 and + 16 of their cycle. Concentration of transferrin (TRF) was significantly lower on day 0 than on days + 5 and + 16, transferrin saturation (TSAT) decreased significantly on days 0 and + 16 compared to day - 5, total iron-binding capacity (TIBC) on day + 16 was significantly higher than those on days - 5 and 0, and on day + 5 it was also significantly higher than that on day 0, unsaturated iron-binding capacity (UIBC) was reduced on day + 16 compared to days - 5 and 0, red blood cell (RBC) count on day + 16 was higher than that on days - 5 and 0 (p < 0.05), with no differences in the concentration of hemoglobin (HB) and packed cell volume (PCV). TRF and TIBC (r = 0.95), RBC and HB (r = 0.64), RBC and PCV (r = 0.78), and HB and PCV (r = 0.63) were positively and significantly correlated (P < 0.05). The estrous cycle in the Spanish Purebred mare is characterized by an increase in TRF and TIBC during the follicular phase and an increase in TSAT, UIBC and RBC in the luteal phase, without changes in other hematological parameters. The coordinated activity of these parameters guarantees an adequate iron (Fe) transfer and utilization during follicular development, ovulation, and the luteal period in the mare. Therefore, the estrous cycle must be considered in the evaluation of the mare's iron status, in light of significant changes observed both in early and at late luteal phases. The magnitude of these changes and the meaning to the physiology of the mares showed that in cyclic mares, hematological parameters and indicators of iron status evolve differently depending on the phase of the cycle, and their interpretation can help to veterinarians involved in equine practice.

3.
Horm Behav ; 162: 105541, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38583235

RESUMEN

INTRODUCTION: Interoceptive stimuli elicited by drug administration acquire conditioned modulatory properties of the induction of conditioned appetitive behaviours by exteroceptive cues. This effect may be modeled using a drug discrimination task in which the drug stimulus is trained as a positive-feature (FP) occasion setter (OS) that disambiguates the relation between an exteroceptive light conditioned stimulus (CS) and a sucrose unconditioned stimulus (US). We previously reported that females are less sensitive to generalization of a FP morphine OS than males, so we investigated the role of endogenous ovarian hormones in this difference. METHODS: Male and female rats received intermixed injections of 3.2 mg/kg morphine or saline before each daily training session. Training consisted of 8 presentations of the CS, each followed by access to sucrose on morphine, but not saline sessions. Following acquisiton, rats were tested for generalization of the morphine stimulus to 0, 1.0, 3.2, and 5.4 mg/kg morphine. Female rats were monitored for estrous cyclicity using vaginal cytology throughout the study. RESULTS: Both sexes acquired stable drug discrimination. A gradient of generalization was measured across morphine doses and this behaviour did not differ by sex, nor did it differ across the estrous cycle in females. CONCLUSIONS: Morphine generalization is independent of fluctuations in levels of sex and endogenous gonadal hormones in females under these experimental conditions.

4.
Biol Psychiatry Glob Open Sci ; 4(3): 100295, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38533248

RESUMEN

Background: Cocaine-induced plasticity in the nucleus accumbens shell of males occurs primarily in dopamine D1 receptor-expressing medium spiny neurons (D1R-MSNs), with little if any impact on dopamine D2 receptor-expressing medium spiny neurons (D2R-MSNs). In females, the effect of cocaine on accumbens shell D1R- and D2R-MSN neurophysiology has yet to be reported, nor have estrous cycle effects been accounted for. Methods: We used a 5-day locomotor sensitization paradigm followed by a 10- to 14-day drug-free abstinence period. We then obtained ex vivo whole-cell recordings from fluorescently labeled D1R-MSNs and D2R-MSNs in the nucleus accumbens shell of male and female mice during estrus and diestrus. We examined accumbens shell neuronal excitability as well as miniature excitatory postsynaptic currents (mEPSCs). Results: In females, we observed alterations in D1R-MSN excitability across the estrous cycle similar in magnitude to the effects of cocaine in males. Furthermore, cocaine shifted estrous cycle-dependent plasticity from intrinsic excitability changes in D1R-MSNs to D2R-MSNs. In males, cocaine treatment produced the anticipated drop in D1R-MSN excitability with no effect on D2R-MSN excitability. Cocaine increased mEPSC frequencies and amplitudes in D2R-MSNs from females in estrus and mEPSC amplitudes of D2R-MSNs from females in diestrus. In males, cocaine increased both D1R- and D2R-MSN mEPSC amplitudes with no effect on mEPSC frequencies. Conclusions: Overall, while there are similar cocaine-induced disparities regarding the relative excitability of D1R-MSNs versus D2R-MSNs between the sexes, this is mediated through reduced D1R-MSN excitability in males, whereas it is due to heightened D2R-MSN excitability in females.


The nucleus accumbens shell (NAcSh) is a key brain region involved in motivation and reward. It is primarily composed of dopamine D1 and D2 receptor­expressing medium spiny neurons (D1R and D2R neurons). Previous studies in males demonstrated that D1R neurons undergo intrinsic plasticity following cocaine exposure, believed to underlie aspects of drug addiction. We confirmed this effect. It has also been generally assumed that females would show similar responses. However, this does not appear to be true, and our data indicate 2 novel findings. First, under baseline conditions, the estrous cycle produces recurring changes in D1R neuron excitability, with no changes observed in D2R neurons. Second, following cocaine exposure, D1R neuron plasticity is arrested, and D2R neurons begin to show estrous cycle effects on intrinsic excitability. These results indicate profound sex differences in the neurophysiological underpinnings of motivational behaviors including drug addiction.

5.
J Equine Vet Sci ; 135: 105034, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428754

RESUMEN

Gut microbiota plays a crucial role in various physiological processes, including the regulation of the reproductive system and steroid sex hormones. Throughout the normal estrous cycle of healthy mares, the levels of estradiol-17ß (E2) and progesterone (P4) in the blood exhibit periodic changes. To investigate the relationship between cyclic changes in steroid sex hormones and the gut microbiome of mares, we analyzed the fecal microbiota composition in healthy mares during the typical estrous cycle. Blood and fecal samples from five healthy mares were collected, E2 and P4 levels in serum were analyzed using radioimmunoassay (RIA), and the gut microbiome was analyzed by 16S rRNA sequencing. The overall richness and composition of the gut microbiota remained relatively stable during the normal estrous cycle in mares. The Linear Discriminant Analysis Effect Size analysis of the microbial composition during the follicular and luteal phases identified the Rhodococcus genus as differentially abundant. These findings indicate that the mare's gut microbiota's significant composition remains consistent throughout the estrous cycle. At the same time, specific low-abundance pathogenic bacteria exhibit changes that align with sexual hormonal fluctuations.


Asunto(s)
Ciclo Estral , Microbiota , Caballos , Animales , Femenino , ARN Ribosómico 16S/genética , Ciclo Estral/fisiología , Progesterona , Hormonas Esteroides Gonadales
6.
BMC Vet Res ; 20(1): 98, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461282

RESUMEN

BACKGROUND: Saidi sheep are the most abundant ruminant livestock species in Upper Egypt, especially in the Assiut governorate. Sheep are one of the most abundant animals raised for food in Egypt. They can convert low-quality roughages into meat and milk in addition to producing fiber and hides therefore; great opportunity exists to enhance their reproduction. Saidi breed is poorly known in terms of reproduction. So this work was done to give more information on some hormonal, oxidative, and blood metabolites parameters in addition to histological, histochemical and immunohistochemical investigations of the ovary during follicular phase of estrous cycle. The present study was conducted on 25 healthy Saidi ewes for serum analysis and 10 healthy ewes for histological assessment aged 2 to 5 years and weighted (38.5 ± 2.03 kg). RESULTS: The follicular phase of estrous cycle in Saidi sheep was characterized by the presence of ovarian follicles in different stages of development and atresia in addition to regressed corpus luteum. Interestingly, apoptosis and tissue oxidative markers play a crucial role in follicular and corpus luteum regression. The most prominent features of the follicular phase were the presence of mature antral (Graafian) and preovulatory follicles as well as increased level of some blood metabolites and oxidative markers. Here we give a new schematic sequence of ovarian follicles in Saidi sheep and describing the features of different types. We also clarified that these histological pictures of the ovary was influenced by hormonal, oxidative and blood metabolites factors that characterizes the follicular phase of estrous cycle in Saidi sheep. CONCLUSION: This work helps to understanding the reproduction in Saidi sheep which assist in improving the reproductive outcome of this breed of sheep. These findings are increasingly important for implementation of a genetic improvement program and utilizing the advanced reproductive techniques as estrous synchronization, artificial insemination and embryo transfer.


Asunto(s)
Fase Folicular , Ovario , Femenino , Ovinos , Animales , Ovario/metabolismo , Folículo Ovárico , Cuerpo Lúteo , Ciclo Estral
7.
Reprod Biol ; 24(2): 100862, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402721

RESUMEN

Calpain role has been shown in the cumulus cell-oocyte complexes and, corpus luteum. We investigated the association of calpains-1 and -2 in ovarian folliculogenesis using the Sprague-Dawley (SD) rat model and steroidogenesis in the human granulosa cells (hGCs). We induced PCOS in 42-day-old SD rats by letrozole oral gavage for 21 days. Premature ovarian failure (POF) was induced in 21-day-old SD rats by 4-vinylcyclohexene diepoxide (VCD). Ovulation and ovarian hyperstimulatory (OHS) syndrome were induced by pregnant mare gonadotropin (PMSG) + human chorionic gonadotropin (hCG) treatments in 21 days SD rats, respectively. Steroidogenesis is stimulated in human granulosa cells (hGCs) by forskolin and the response of 17-beta-estradiol (E2) on calpains expression was checked in hGCs. The protein expression by immunoblotting and activity by biochemical assay of calpains-1 and -2 showed an oscillating pattern in the ovarian cycle. PMSG-induced follicular recruitment showed upregulation of calpains-1 and -2, but with no change during ovarian function cessation (POF). Upregulated calpain-2 expression and calpain activity was found in the hCG +PMSG-induced ovulation. Letrozole-induced PCOS showed downregulation of calpain-1, but upregulation of calpain-2. PMSG+hCG-induced OHS led to the upregulation of calpain-1. Letrozole and metformin separately increased the expression level of calpains-1 and -2 in the hGCs during luteinization. In conclusion, the expression levels of calpains -1 and -2 are increased with ovarian follicular recruitment by PMSG and calpain-1 is decreased in the PCOS condition, and letrozole and metformin upregulate the expression of calpains-1 and -2 during luteinization in the hGCs possibly via E2 action.

8.
J Reprod Dev ; 70(2): 115-122, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38346724

RESUMEN

The NR4A nuclear receptor family (NR4As), encompassing NR4A1, NR4A2, and NR4A3, exerts pivotal roles in cellular processes through intricate expression patterns and interactions. Despite the influence of some NR4As on anterior pituitary functions regulated by the hypothalamus, their physiological expression patterns remain unclear. In our prior work, we demonstrated the specific upregulation of NR4A3 in the rat anterior pituitary gland during the proestrus afternoon, coinciding with a gonadotropin surge. In this study, we investigated changes in pituitary Nr4a gene expression throughout the estrous cycle in rats and a gonadotropin surge-induced model. Nr4a1 and Nr4a2 gene expression significantly increased during proestrus, aligning with previous observations for Nr4a3. Furthermore, prolactin gene expression increased sequentially with rising Nr4a gene expression, while thyroid-stimulating hormone beta gene expression remained stable. Immunohistochemistry revealed a widespread and differential distribution of NR4A proteins in the anterior pituitary, with NR4A1 and NR4A3 being particularly abundant in thyrotrophs, and NR4A2 in gonadotrophs. In estrogen-treated ovariectomized rats, elevated luteinizing hormone secretion corresponded to markedly upregulated expression of Nr4a1, Nr4a2, and Nr4a3. In gonadotroph and somatomammotroph cell lines, gonadotropin- and thyrotropin-releasing hormones transiently and dose-dependently increased the expression of Nr4a genes. These findings suggest that hypothalamic hormone secretion during proestrus may induce the parallel expression of pituitary Nr4a genes, potentially influencing the pituitary gene expression program related to endocrine functions before and after ovulation.


Asunto(s)
Adenohipófisis , Hipófisis , Femenino , Ratas , Animales , Proestro/fisiología , Hipófisis/metabolismo , Adenohipófisis/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Gonadotropinas/metabolismo
9.
Osteoarthritis Cartilage ; 32(5): 501-513, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408635

RESUMEN

OBJECTIVE: The objective was to critically analyze the published literature accounting for sex differences and skeletal age (open vs. closed physis) in preclinical animal models of OA, including the disaggregation of data by sex and skeletal maturity when data is generated from combined sex and/or multi-aged cohorts without proper confounding. METHOD: A scoping literature review of PubMed, Web of Science, EMBASE, and SCOPUS was performed for studies evaluating the effect of sex and age in experimental studies and clinical trials utilizing preclinical large animal models of OA. RESULTS: A total of 9727 papers were identified in large animal (dog, pig, sheep, goat, horse) models for preclinical OA research, of which 238 ex vivo and/or in vivo studies disclosed model type, animal species, sex, and skeletal age sufficient to analyze their effect on outcomes. Dogs, followed by pigs, sheep, and horses, were the most commonly used models. A paucity of preclinical studies evaluated the effect of sex and age in large animal models of naturally occurring or experimentally induced OA: 26 total studies reported some kind of analysis of the effects of sex or age, with 4 studies discussing the effects of sex only, 11 studies discussing the effects of age only, and 11 studies analyzing both the effects of age and sex. CONCLUSION: Fundamental to translational research, OARSI is uniquely positioned to develop recommendations for conducting preclinical studies using large animal models of OA that consider biological mechanisms linked to sex chromosomes, skeletal age, castration, and gonadal hormones affecting OA pathophysiology and treatment response.


Asunto(s)
Osteoartritis , Femenino , Masculino , Porcinos , Animales , Ovinos , Caballos , Perros , Modelos Animales de Enfermedad , Osteoartritis/veterinaria , Cabras , Bibliometría , Placa de Crecimiento
10.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38346894

RESUMEN

When rats are given discrete choices between social interactions with a peer and opioid or psychostimulant drugs, they choose social interaction, even after extensive drug self-administration experience. Studies show that like drug and nondrug food reinforcers, social interaction is an operant reinforcer and induces dopamine release. However, these studies were conducted with same-sex peers. We examined if peer sex influences operant social interaction and the role of estrous cycle and striatal dopamine in same- versus opposite-sex social interaction. We trained male and female rats (n = 13 responders/12 peers) to lever-press (fixed-ratio 1 [FR1] schedule) for 15 s access to a same- or opposite-sex peer for 16 d (8 d/sex) while tracking females' estrous cycle. Next, we transfected GRAB-DA2m and implanted optic fibers into nucleus accumbens (NAc) core and dorsomedial striatum (DMS). We then retrained the rats for 15 s social interaction (FR1 schedule) for 16 d (8 d/sex) and recorded striatal dopamine during operant responding for a peer for 8 d (4 d/sex). Finally, we assessed economic demand by manipulating FR requirements for a peer (10 d/sex). In male, but not female rats, operant responding was higher for the opposite-sex peer. Female's estrous cycle fluctuations had no effect on operant social interaction. Striatal dopamine signals for operant social interaction were dependent on the peer's sex and striatal region (NAc core vs DMS). Results indicate that estrous cycle fluctuations did not influence operant social interaction and that NAc core and DMS dopamine activity reflect sex-dependent features of volitional social interaction.


Asunto(s)
Condicionamiento Operante , Dopamina , Ratas , Animales , Masculino , Femenino , Dopamina/farmacología , Interacción Social , Cuerpo Estriado , Inhibidores de Captación de Dopamina/farmacología , Núcleo Accumbens
11.
Animals (Basel) ; 14(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396539

RESUMEN

This study investigates the non-invasive monitoring of the endocrine ovarian activities of captive female golden takins (Budorcas taxicolor bedfordi) based on long-term fecal sex steroid hormone metabolite dynamics. Fecal progesterone (P4) metabolite dynamics were monitored in nine females for 0.5-15 years between 2004 and 2022. Fecal estradiol-17ß (E2) and estrone (E1) metabolites were measured during certain estrous cycles, and fecal E1 metabolite concentrations were measured during all gestation periods. The breeding season of the captive animals was mainly between May and December, and they were polyestrous animals whose breeding season begins during the long-day period. The onset of the breeding season occurred slightly earlier as age increased. The mean age (±SD) at puberty based on fecal P4 metabolite dynamics was 4.1 ± 2.9 years. The first conception ages ranged from 2.3-10.2 years. The mean estrous cycle period (±SEM) was 25.4 ± 1.1 days, and mounting and mating occurred in periods of low fecal P4 metabolite levels during the breeding season. The mean gestation period (±SD) from the estimated mating date to the calving date was 253.9 ± 5.7 days, and the fecal P4 metabolite distribution during pregnancy was bimodal. Fecal estrone metabolite levels gradually increased 21 weeks before delivery, peaked during the week of delivery, and then markedly decreased in the first week after delivery. Estrus resumed in the first April-August period after delivery (mean ± SD; 103.5 ± 40.9 days) or in May of the year after delivery (421.0 ± 16.5 days). This study revealed that the estrous cycle and pregnancy of female golden takins can be determined by fecal progesterone metabolite dynamics and that fecal estrone metabolite dynamics increases toward parturition and are useful for predicting the date of delivery. This endocrinological information is important for planned breeding efforts for the golden takins.

12.
EJNMMI Res ; 14(1): 17, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340184

RESUMEN

BACKGROUND: Endometriosis is characterized by the ectopic occurrence of endometrial tissue. Though considered benign, endometriotic lesions possess tumor-like properties such as tissue invasion and remodeling of the extracellular matrix. One major clinical hurdle concerning endometriosis is its diagnosis. The diagnostic modalities ultrasound and MRI are often unable to detect all lesions, and a clear correlation between imaging and clinical symptoms is still controversial. Therefore, it was our aim to identify a potential target to image active endometriotic lesions. RESULTS: For our studies, we employed the preclinical radiotracer [111In]In-FnBPA5, which specifically binds to relaxed fibronectin-an extracellular matrix protein with key functions in homeostasis that has been implicated in the pathogenesis of diseases such as cancer and fibrosis. We employed this tracer in biodistribution as well as SPECT/CT studies in mice and conducted immunohistochemical stainings on mouse uterine tissue as well as on patient-derived endometriosis tissue. In biodistribution and SPECT/CT studies using the radiotracer [111In]In-FnBPA5, we found that radiotracer uptake in the myometrium varies with the estrous cycle of the mouse, leading to higher uptake of [111In]In-FnBPA5 during estrogen-dependent phases, which indicates an increased abundance of relaxed fibronectin when estrogen levels are high. Finally, immunohistochemical analysis of patient samples demonstrated that there is preferential relaxation of fibronectin in the proximity of the endometriotic stroma. CONCLUSION: Estrous cycle stages characterized by high estrogen levels result in a higher abundance of relaxed fibronectin in the murine myometrium. This finding together with a first proof-of-concept study employing human endometriosis tissues suggests that relaxed fibronectin could be a potential target for the development of a diagnostic radiotracer targeting endometriotic lesions. With [111In]In-FnBPA5, the matching targeting molecule is in preclinical development.

13.
Psychopharmacology (Berl) ; 241(5): 1011-1025, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38282126

RESUMEN

RATIONALE: Multiple psychiatric disorders are associated with altered brain and serum levels of neuroactive steroids, including the endogenous GABAergic steroid, allopregnanolone. Clinically, chronic cocaine use was correlated with decreased levels of pregnenolone. Preclinically, the effect of acute cocaine on allopregnanolone levels in rodents has had mixed results, showing an increase or no change in allopregnanolone levels in some brain regions. OBJECTIVE: We hypothesized that cocaine acutely increases allopregnanolone levels, but repeated cocaine exposure decreases allopregnanolone levels compared to controls. METHODS: We performed two separate studies to determine how systemic administration of 15 mg/kg cocaine (1) acutely or (2) chronically alters brain (olfactory bulb, frontal cortex, dorsal striatum, and midbrain) and serum allopregnanolone levels in adult male and female Sprague-Dawley rats. RESULTS: Cocaine acutely increased allopregnanolone levels in the midbrain, but not in olfactory bulb, frontal cortex, or dorsal striatum. Repeated cocaine did not persistently (24 h later) alter allopregnanolone levels in any region in either sex. However, allopregnanolone levels varied by sex across brain regions. In the acute study, we found that females had significantly higher allopregnanolone levels in serum and olfactory bulb relative to males. In the repeated cocaine study, females had significantly higher allopregnanolone levels in olfactory bulb, frontal cortex, and serum. Finally, acute cocaine increased allopregnanolone levels in the frontal cortex of females in proestrus, relative to non-proestrus stages. CONCLUSION: Collectively these results suggest that allopregnanolone levels vary across brain regions and by sex, which may play a part in differential responses to cocaine by sex.


Asunto(s)
Cocaína , Pregnanolona , Humanos , Adulto , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Encéfalo , Mesencéfalo , Cocaína/farmacología
14.
BMC Vet Res ; 20(1): 4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172906

RESUMEN

INTRODUCTION: This study aimed to investigate the microbial characteristics of yak uteri collected using intrauterine cotton swabs (CS) during different reproductive stages and the correlation of these microbial characteristics with reproductive status. METHODS: We used a macrogenomic approach to analyze the functional aspects of different microorganisms in samples collected during the pre-estrus, estrus, late estrus, and diestrus stages. RESULTS: The results revealed the presence of 1293 microbial genera and 3401 microbial species in the uteri of yaks at different reproductive stages. The dominant bacterial species varied across the different periods, with Micrococcus and Proteus being dominant during pre-estrus; Pseudomonas, Clostridium, Flavobacterium, Bacillus, and Staphylococcus during estrus; Acinetobacter, Bacillus and Proteus during late estrus; and Pseudomonas, Escherichia coli, and Proteus during diestrus. DISCUSSION: The primary functions of these bacteria are enriched in various metabolic pathways, including carbohydrate and amino acid metabolism, intracellular transport and secretion, post-translational protein modification, and drug resistance. These findings suggest that the microbial diversity in the uterus of yaks plays a crucial role in reproductive regulation and can help prevent reproductive tract-related diseases.


Asunto(s)
Estro , Útero , Femenino , Bovinos , Animales , Útero/metabolismo , Reproducción
15.
Microbiol Spectr ; 12(2): e0203723, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38171017

RESUMEN

Symbiotic microbial communities affect the host immune system and produce molecules contributing to the odor of an individual. In many mammalian species, saliva and vaginal fluids are important sources of chemical signals that originate from bacterial metabolism and may act as honest signals of health and reproductive status. In this study, we aimed to define oral and vaginal microbiomes and their dynamics throughout the estrous cycle in wild house mice. In addition, we analyzed a subset of vaginal proteomes and metabolomes to detect potential interactions with microbiomes. 16S rRNA sequencing revealed that both saliva and vagina are dominated by Firmicutes and Proteobacteria but differ at the genus level. The oral microbiome is more stable during the estrous cycle and most abundant bacteria belong to the genera Gemella and Streptococcus, while the vaginal microbiome shows higher bacterial diversity and dynamics during the reproductive cycle and is characterized by the dominance of Muribacter and Rodentibacter. These two genera cover around 50% of the bacterial community during estrus. Proteomic profiling of vaginal fluids revealed specific protein patterns associated with different estrous phases. Highly expressed proteins in estrus involve the keratinization process thus providing estrus markers (e.g., Hrnr) while some proteins are downregulated such as immune-related proteins that limit bacterial growth (Camp, Clu, Elane, Lyz2, and Ngp). The vaginal metabolome contains volatile compounds potentially involved in chemical communication, for example, ketones, aldehydes, and esters of carboxylic acids. Data integration of all three OMICs data sets revealed high correlations, thus providing evidence that microbiomes, host proteomes, and metabolomes may interact.IMPORTANCEOur data revealed dynamic changes in vaginal, but not salivary, microbiome composition during the reproductive cycle of wild mice. With multiple OMICs platforms, we provide evidence that changes in microbiota in the vaginal environment are accompanied by changes in the proteomic and metabolomics profiles of the host. This study describes the natural microbiota of wild mice and may contribute to a better understanding of microbiome-host immune system interactions during the hormonal and cellular changes in the female reproductive tract. Moreover, analysis of volatiles in the vaginal fluid shows particular substances that can be involved in chemical communication and reproductive behavior.


Asunto(s)
Proteoma , Proteómica , Femenino , Animales , Ratones , ARN Ribosómico 16S/genética , Ciclo Estral , Reproducción , Bacterias/genética , Vagina/microbiología , Mamíferos , Proteínas de Unión al Calcio , Proteínas de Filamentos Intermediarios
16.
Endocrinology ; 165(3)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38279940

RESUMEN

The arcuate nucleus kisspeptin (ARNKISS) neurons represent the GnRH pulse generator that likely drives pulsatile gonadotropin secretion in all mammals. Using an improved GCaMP fiber photometry system enabling long-term continuous recordings, we aimed to establish a definitive profile of ARNKISS neuronal activity across the murine estrous cycle. As noted previously, a substantial reduction in the frequency of ARNKISS neuron synchronization events (SEs) occurs on late proestrus and extends into estrus. The SE amplitude remains constant throughout the cycle. During metestrus, we unexpectedly detected many multipeak SEs where many SEs occurred rapidly, within 160 seconds of each other. By applying a machine learning-based, k-means clustering analysis, we were further able to detect substantial within-stage variability in the patterns of pulse generator activity. Estrous cycle-dependent changes in SE activity occurred around the time of lights on and off. We also find that a mild stressor such as vaginal lavage reduces ARNKISS neuron SE frequency for up to 3 hours. These observations provide a comprehensive account of ARNKISS neuron activity across the estrous cycle, highlight a new pattern of multipeak SE activity, and introduce a new k-means clustering approach for analyzing ARNKISS neuron population behavior.


Asunto(s)
Hormona Liberadora de Gonadotropina , Hormona Luteinizante , Animales , Femenino , Ratones , Núcleo Arqueado del Hipotálamo/metabolismo , Ciclo Estral/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neuronas/metabolismo
17.
Behav Brain Res ; 461: 114860, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216058

RESUMEN

Despite known sex differences in brain function, female subjects are underrepresented in preclinical neuroscience research. This is driven in part by concerns about variability arising from estrous cycle-related hormone fluctuations, especially in fear- and anxiety-related research where there are conflicting reports as to whether and how the cycle influences behavior. The inconsistency may arise from a lack of common standards for tracking and reporting the cycle as opposed to inherent unpredictability in the cycle itself. The rat estrous cycle is conventionally tracked by assigning vaginal cytology smears to one of four qualitatively-defined stages. Although the cytology stages are of unequal length, the stage names are often, but not always, used to refer to the four cycle days. Subjective staging criteria and inconsistent use of terminology are not necessarily a problem in research on the cycle itself, but can lead to irreproducibility in neuroscience studies that treat the stages as independent grouping factors. We propose the explicit use of cycle days as independent variables, which we term Track-by-Day to differentiate it from traditional stage-based tracking, and that days be indexed to the only cytology feature that is a direct and rapid consequence of a hormonal event: a cornified cell layer formed in response to the pre-ovulatory 17ß-estradiol peak. Here we demonstrate that cycle length is robustly regular with this method, and that the method outperforms traditional staging in detecting estrous cycle effects on Pavlovian fear conditioning and on a separate proxy for hormonal changes, uterine histology.


Asunto(s)
Ciclo Estral , Vagina , Humanos , Ratas , Femenino , Masculino , Animales , Ciclo Estral/fisiología , Vagina/fisiología , Estradiol/farmacología , Miedo/fisiología
18.
Steroids ; 201: 109344, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979822

RESUMEN

The striatal brain regions encompassing the nucleus accumbens core (NAcc), shell (NAcs) and caudate-putamen (CPu) regulate cognitive functions including motivated behaviors, habit, learning, and sensorimotor action, among others. Sex steroid hormone sensitivity and sex differences have been documented in all of these functions in both normative and pathological contexts, including anxiety, depression and addiction. The neurotransmitter glutamate has been implicated in regulating these behaviors as well as striatal physiology, and there are likewise documented sex differences in glutamate action upon the striatal output neurons, the medium spiny neurons (MSNs). Here we review the available data regarding the role of steroid sex hormones such as 17ß-estradiol (estradiol), progesterone, and testosterone in rapidly modulating MSN glutamatergic synapse properties, presented in the context of the estrous cycle as appropriate. Estradiol action upon glutamatergic synapse properties in female NAcc MSNs is most comprehensively discussed. In the female NAcc, MSNs exhibit development period-specific sex differences and estrous cycle variations in glutamatergic synapse properties as shown by multiple analyses, including that of miniature excitatory postsynaptic currents (mEPSCs). Estrous cycle-differences in NAcc MSN mEPSCs can be mimicked by acute exposure to estradiol or an ERα agonist. The available evidence, or lack thereof, is also discussed concerning estrogen action upon MSN glutamatergic synapse in the other striatal regions as well as the underexplored roles of progesterone and testosterone. We conclude that there is strong evidence regarding estradiol action upon glutamatergic synapse function in female NAcs MSNs and call for more research regarding other hormones and striatal regions.


Asunto(s)
Núcleo Accumbens , Progesterona , Femenino , Humanos , Masculino , Encéfalo , Estradiol/farmacología , Ciclo Estral , Glutamatos , Núcleo Accumbens/fisiología , Putamen/química , Sinapsis , Testosterona , Núcleo Caudado/química , Núcleo Caudado/fisiología
19.
Biofactors ; 50(1): 101-113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37482913

RESUMEN

Brown adipose tissue (BAT) converts chemical energy into heat to maintain body temperature. Although fatty acids (FAs) represent a primary substrate for uncoupling protein 1 (UCP1)-dependent thermogenesis, BAT also utilizes glucose for the same purpose. Considering that estrous cycle effects on BAT are not greatly explored, we examined those of 6-h fasting on interscapular BAT (iBAT) thermogenic markers in proestrus and diestrus. We found that the percentage of multilocular adipocytes was lower in proestrus than in diestrus, although it was increased after fasting in both analyzed estrous cycle stages. Furthermore, the percentage of paucilocular adipocytes was increased by fasting, unlike the percentage of unilocular cells, which decreased in both analyzed stages of the estrous cycle. The UCP1 amount was lower in proestrus irrespectively of the examined dietary regimens. Regarding FA transporters, it was shown that iBAT CD36 content was increased in fasted rats in diestrus. In contrast to GLUT1, the level of GLUT4 was interactively modulated by selected estrous cycle phases and fasting. There was no change in insulin receptor and ERK1/2 activation, while AKT activation was interactively modulated by fasting and estrous cycle stages. Our study showed that iBAT exhibits morphological and functional changes in proestrus and diestrus. Moreover, iBAT undergoes additional dynamic functional and morphological changes during short-term fasting to modulate nutrient utilization and adjust energy expenditure.


Asunto(s)
Tejido Adiposo Pardo , Termogénesis , Femenino , Ratas , Animales , Dieta , Ayuno , Ciclo Estral , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
20.
Physiol Genomics ; 56(1): 74-97, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37694291

RESUMEN

Conserved in female reproduction across all mammalian species is the estrous cycle and its regulation by the hypothalamic-pituitary-gonadal (HPG) axis, a collective of intersected hormonal events that are crucial for ensuring uterine fertility. Nonetheless, knowledge of the direct mediators that synchronously shape the uterine microenvironment for successive yet distinct events, such as the transit of sperm and support for progressive stages of preimplantation embryo development, remain principally deficient. Toward understanding the timed endometrial outputs that permit luminal events as directed by the estrous cycle, we used Bovidae as a model system to uniquely surface sample and study temporal shifts to in vivo endometrial transcripts that encode for proteins destined to be secreted. The results revealed the full quantitative profile of endometrial components that shape the uterine luminal microenvironment at distinct phases of the estrous cycle (estrus, metestrus, diestrus, and proestrus). In interpreting this comprehensive log of stage-specific endometrial secretions, we define the "uterine secretory cycle" and extract a predictive understanding of recurring physiological actions regulated within the uterine lumen in anticipation of sperm and preimplantation embryonic stages. This repetitive microenvironmental preparedness to sequentially provide operative support was a stable intrinsic framework, with only limited responses to sperm or embryos if encountered in the lumen within the cyclic time period. In uncovering the secretory cycle and unraveling realistic biological processes, we present novel foundational knowledge of terminal effectors controlled by the HPG axis to direct a recurring sequence of vital functions within the uterine lumen.NEW & NOTEWORTHY This study unravels the recurring sequence of changes within the uterus that supports vital functions (sperm transit and development of preimplantation embryonic stages) during the reproductive cycle in female Ruminantia. These data present new systems knowledge in uterine reproductive physiology crucial for setting up in vitro biomimicry and artificial environments for assisted reproduction technologies for a range of mammalian species.


Asunto(s)
Semen , Útero , Embarazo , Animales , Femenino , Masculino , Útero/metabolismo , Endometrio , Ciclo Estral/fisiología , Estro , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...